ЦЕНТР ИССЛЕДОВАНИЯ И КОНТРОЛЯ ВОДЫ

УТВЕРЖДАЮ

Главный инженер Центра исследования и контроля воды Г.Ф. Глущенкова 2005 г.

МЕТОДИКА

выполнения измерений химического потребления кислорода (ХПК) в пробах природных и сточных вод титриметрическим методом

ЦВ 3.01.17-01 "А"

ФР.1.31.2002.00639

1 Назначение и область применения

Настоящий документ устанавливает методику выполнения измерений (МВИ) химического потребления кислорода (ХПК) в пробах природных и сточных вод титриметрическим методом. Диапазон измеряемых значений ХПК от 5 мг /дм³ до 10000 мг/дм³.

Пробы вод **со значениями** ХПК выше **200** мг/дм³ анализируют с предварительным разбавлением.

МВИ не применима к высокоминерализованным водам, содержащим (после разбавления) более 1 г/дм³ хлоридов и к водам, содержащим сернистые соединения (при запахе проб вод сероводородом).

Химическое потребление кислорода (ХПК) - общая концентрация кислорода, равная количеству бихромата, потребленному растворенными и взвешенными веществами при обработке пробы воды данным окислителем в определенных условиях, (ИСО 6060:1989).

2 Характеристика погрешности измерений

Методика выполнения измерений (МВИ) обеспечивает с вероятностью P=0.95 получение результатов измерений с погрешностью, не превышающей значений, приведенных в таблице 1.

Таблина 1

Диапазон измерений значений ХПК, (С), мг/дм ³	Характеристика погрешности (границы интервала, в котором погрешность находится с доверительной вероятностью $P=0,95$), $\pm \Delta$, мг/дм ³
от 5 до 10000	0,15 · C + 0,75

3 Метод измерений

Метод измерения XПК основан на окислении присутствующих в водах органических и неорганических веществ бихроматом калия в кислой среде, в присутствии катализатора, при кипячении и титриметрическом определении его остаточного содержания. При этом окисляются до 90 - 100 % органических соединений, за исключением соединений пиридинового ряда, а также гетероциклических и ароматических углеводородов (бензол, толуол).

4 Средства измерений, вспомогательные устройства, реактивы и материалы

- 4.1 Средства измерений
- 4.1.1 Весы лабораторные общего назначения, по ГОСТ 24104-88, 2 класса точности, с наибольшим пределом взвешивания 200 г.
 - 4.1.2 Бюретки по ГОСТ 29251-91, 2 класса точности вместимостью 25. см³.
 - 4.1.3 Пипетки по ГОСТ 29227-91, 2 класса точности.
 - 4.1.4 Цилиндры по ГОСТ 1770-74, 2 класса точности.
 - 4.1.5 Колбы по ГОСТ 1770-74, 2 класса точности.
- 4.1.6 Государственные стандартные образцы бихроматной окисляемости воды (ХПК), например, ГСО 7425-97.

- 4.2 Вспомогательные устройства.
- 4.2.1 Колбы термостойкие по ГОСТ 25336-82, вместимостью 250 см 3 .
- 4.2.2 Холодильники шариковые по ГОСТ 25336-82.
- 4.2.3 Электроплитка с закрытой спиралью по ГОСТ 14919-83
- 4.2.4 Сушильный шкаф электрический общелабораторного назначения.
- 4.2.5 Устройство перемешивающее, например, магнитная мешалка, или экстрактор типа ПЭ или ППЭ.
 - 4.3. Реактивы и материалы.
 - 3.3.1 Вода дистиллированная по ГОСТ 6709-72.
- 3.3.2 Калий двухромовокислый (бихромат калия), по ГОСТ 4220-75 или стандарт-титр (фиксанал) по ТУ 6-09-2540-87, ТУ 2642-001-07-00602-97.
 - 3.3.3 Кислота серная по ГОСТ 4204-77.
 - 3.3.4 Ртуть сернокислая (II).
 - 3.3.5 Серебро сернокислое по ТУ 6-09-426-92.
- 3.3.6 Соль закиси железа и аммония двойная сернокислая (соль Мора) по ГОСТ 4208-72 или стандарт-титр (фиксанал).
 - 3.3.7 Натрия гидроокись по ГОСТ 4328-77.
 - 3.3.8 N-фенилантраниловая кислота.
 - 3.3.9 Моногидрат 1,10-фенантролина.
 - 3.3.10 Стеклянные шарики, кусочки пемзы.

Все реактивы должны быть квалификации х.ч. или ч.д.а. Допускается использование средств измерений, вспомогательного оборудования и реактивов с метрологическими и техническими характеристиками не хуже указанных.

5 Требования безопасности

При выполнении анализов необходимо соблюдать требования техники безопасности при работе с химическими реактивами по ГОСТ 12.1.007-76 и ГОСТ 12.4.021-75.

При работе с электроустановками должны соблюдаться требования по электробезопасности по ГОСТ 12.1.019-79.

Помещение лаборатории должно соответствовать требованиям пожарной безопасности по ГОСТ 12.1.004-91 и иметь средства пожаротушения по ГОСТ 12.4.009-83.

Исполнители должны быть проинструктированы о мерах безопасности при работе с нагревательными приборами. Организация обучения работающих безопасности труда производится по ГОСТ 12.0.004-90.

6 Требования к квалификации оператора

Определение ХПК может выполнять лаборант - химик, имеющий среднее специальное образование, опыт работы в лаборатории анализа вод, освоивший данную МВИ и подтвердивший соответствие характеристик погрешности нормативам контроля точности по разделу 12.

7 Условия выполнения измерений

При подготовке к выполнению измерений и при их проведении необходимо соблюдать условия, установленные в руководстве по эксплуатации или в паспортах средств измерений и вспомогательного оборудования. Измерения объемов воды и растворов производят при температуре окружающей среды от 15 до 25 °C.

8 Подготовка к выполнению измерений

- 8.1 Приготовление растворов
- 8.1.1Растворы бихромата калия и соли Мора готовят из навески соответствующей соли или из стандарт-титра (фиксанала).
- 8.1.1.1 Раствор бихромата калия молярной концентрации $C(1/6 \text{ K}_2\text{Cr}_2\text{O}_7) = 0.25 \text{ моль/дм}^3 (0.25 \text{ н}).$

Для приготовления 1 дм³ раствора в мерную колбу вместимостью 1 дм³ помещают 12,260 г бихромата калия, высушенного в течение 2 ч при температуре $(105 \pm 5)^{\circ}$ С, растворяют в дистиплированной воде, доводя объем раствора до метки. Хранят раствор в склянке с притертой пробкой в темном месте

Срок хранения - 6 мес.

8.1.1.2 Раствор бихромата калия молярной концентрации С $(1/6 \text{ K}_2\text{Cr}_2\text{O}_7) = 0,1 \text{ моль/дм}^3 (0,1 \text{ н}).$

Раствор готовят из стандарт титра (фиксанала) согласно инструкции по применению. Хранят раствор в склянке с притертой пробкой в темном месте

Срок хранения - 3.мес.

8.1.1.3 Раствор соли Мора молярной концентрации С $((NH_4)_2SO_4 \cdot FeSO_4 \cdot 6H_20) = 0,25$ моль/дм 3 (0,25 н)

Для приготовления 1 дм³ раствора в мерную колбу вместимостью 1 дм³ помещают 98 г соли Мора, растворяют в дистиллированной воде, прибавляют 20 см³ концентрированной серной кислоты и после охлаждения доводят раствор в колбе до метки дистиллированной водой.

Срок хранения – 4 мес.

8.1.1.4 Раствор соли Мора молярной концентрации С ((NH₄)₂SO₄ · FeSO₄ · 6H₂0) = 0.1 моль/лм³ (0.1 н)

Раствор готовят из стандарт-титра (фиксанала) согласно инструкции по применению или следующим образом: в мерную колбу вместимостью 1 дм³ помещают 40,0 г соли Мора, растворяют в дистиллированной воде, прибавляют 20 см³ концентрированной серной кислоты и после охлаждения доводят раствор в колбе до метки дистиллированной водой.

Срок хранения – 1 мес.

8.1.2 Раствор бихромата калия молярной концентрации С $(1/6K_2Cr_2O_7) = 0.025$ моль/дм³ (0.025 н)

Для приготовления 1 дм³ раствора в мерную колбу вместимостью 1 дм³ помещают 100 см³ раствора бихромата калия, приготовленного по 8.1.1.1, или 250 см³ раствора бихромата калия, приготовленного по 8.1.1.2 и доводят объем до метки дистиллированной водой. Раствор используют свежеприготовленным.

8.1.3 Раствор соли Мора молярной концентрации С ((NH₄)₂SO₄ · FeSO₄ · 6H₂0) = 0,025 моль/дм³ (0,025 н)

Для приготовления 1 дм³ раствора в мерную колбу вместимостью 1 дм³ помещают 100 см³ раствора соли Мора, приготовленного по 8.1.1.3, или 250 см³ раствора соли Мора, приготовленного по 8.1.1.4 и доводят объем до метки дистиллированной водой. Раствор используют свежеприготовленным

8.1.4 Раствор гидроксида натрия молярной концентрации C (NaOH) = 0,1 моль/дм³ (0,1 н)

Для приготовления 25 см³ раствора 0,1 г гидроксида натрия растворяют в небольшом количестве дистиллированной воды, охлаждают, переносят в мерную колбу вместимостью 25 см³ и доводят до метки дистиллированной водой. Раствор хранят в полиэтиленовой посуде.

8.1.5 Приготовление индикатора

Приготавливают один из индикаторов

8.1.5.1 Раствор ферроина

Для приготовления раствора в мерной колбе вместимостью 100 см³ растворяют 1,50 г моногидрата 1,10-фенантролина и 0,7 г соли Мора в дистиллированной воде и доводят объем раствора до метки дистиллированной водой.

8.1.5.2 Раствор N-фенилантраниловой кислоты

Для приготовления 250 см³ раствора в мерную колбу вместимостью 250 см³ помещают 0,25 г N-фенилантраниловой кислоты, растворяют в 12 см³ раствора гидроокиси натрия, приготовленного по 8.1.4, и доводят объем до метки дистиллированной водой.

8.2 Установление поправочных коэффициентов растворов соли Мора

 $10~{\rm cm}^3$ раствора бихромата калия, $(V_{\rm k})$, ${\rm cm}^3$ разбавляют дистиллированной водой приблизительно до $100~{\rm cm}^3$, прибавляют $10~{\rm cm}^3$ концентрированной серной кислоты и после охлаждения титруют раствором соли Мора, $(V_{\rm m})$, ${\rm cm}^3$ при добавлении двух-трех капель раствора ферроина или пяти капель N-фенилантраниловой кислоты до изменения окраски индикатора. Переход окраски для N-фенилантраниловой кислоты из красно-фиолетовой в изумрудно-зеленую, для ферроина - от зеленой до красноватосиней. В качестве конечной точки титрования берут первое резкое изменение цвета.

Поправочный коэффициент (К) раствора соли Мора вычисляют по формуле: $K = V_{\kappa'} V_{\mathsf{M}}$. Поправочный коэффициент устанавливается один раз в день перед началом измерений.

9 Отбор проб

Основные требования по отбору проб по ГОСТ Р 51592-2000. Отбор производят в стеклянную или полимерную посуду. Объем пробы воды для измерений не менее $0,5\,\,\mathrm{дm}^3$. Пробу хранят при температуре не выше $25\,^{0}\mathrm{C}$ не более $6\,^{4}\mathrm{v}$, а при температуре не выше $5\,^{0}\mathrm{C}$ не более $1\,\mathrm{сут}$. При необходимости пробу консервируют. Если ее хранят в стеклянной посуде - добавлением $1\,\mathrm{cm}^3$ концентрированной серной кислоты на $1\,\mathrm{дm}^3$ пробы. Срок хранения консервированной пробы при температуре не выше $5\,^{\circ}\mathrm{C}$ в темном месте не более $5\,\mathrm{сут}$. Если пробу хранят в полимерной посуде, то ее замораживают при температуре минус $20\,^{\circ}\mathrm{C}$. Срок хранения такой консервированной пробы не более $1\,\mathrm{mec}$.

10 Выполнение измерений

- 10.1 Пробу воды гомогенизируют (при необходимости) с помощью перемешивающего устройства, отбирают пробу на анализ пипеткой с расширенным кончиком, опуская ее до середины объема жидкости в стакане, состав воды в котором одинаков по всему объему.
- 10.2 Пробы воды со значениями ХПК ≥ 200 мг/дм 3 разбавляют таким образом, чтобы на окисление расходовалось не более 50% добавляемого бихромата калия. Пробы перед разбавлением перемешивают. Рекомендуемое разбавление проб вод при определении ХПК приведено в таблице 2.

Таблица 2

Диапазон ХПК, мг/дм ³ О	Объем аликвоты пробы, см ³	Объем дистиллированной воды, см ³	Концентрации бихромата калия и соли Мора, моль/дм ³
5 - 70	20	0	0,025
70 - 200	20	0	0,1
200 - 400	_10	10	0,1
400 - 800	5	15	0,1
800 - 1000	10	10	0,25
1000 - 2000	5	15	0,25
2000 - 5000	2	18	0,25
5000 - 10000	1	19	0,25

10.3 В термостойкую колбу со шлифом помещают 20 см³ пробы или меньший ее объем (в зависимости от предполагаемого значения ХПК), но не менее 1 см³, доведенный дистиллированной водой до 20 см³. Если массовая концентрация хлоридов в анализируемой воде превышает 100 мг/дм³, то в колбу вносят 0,4 г сернокислой ртути (II), если массовая концентрация хлоридов в анализируемой воде от 10 до 100 мг/дм³, то вносят 0,2 г сернокислой ртути (II). Прибавляют 0,4 г серебра сернокислого, 10 см³ раствора бихромата калия и стеклянные шарики или кусочки пемзы, полученную смесь перемешивают. Затем, осторожно помешивая, приливают 30 см³ концентрированной серной кислоты.

Присоединяют обратный холодильник и кипятят 2 часа, чтобы кипение было равномерным и не бурным. Кипячение проводят в вытяжном шкафу под тягой. Необходимо следить, чтобы при 2-х часовом кипячении проб сохранился золотистожелтый оттенок жидкости. Если проба становится желто-зеленой, значит добавленного количества бихромата калия не хватает на полное окисление. В этом случае проводят повторное определение ХПК, отбирая для анализа меньшую аликвоту пробы.

Затем смесь охлаждают до комнатной температуры, отсоединяют холодильник, смывают продукты реакции из холодильника в колбу 25 см³ дистиллированной водой, приливают в колбу 75 см³ дистиллированной воды и смесь вновь охлаждают до комнатной температуры. Затем добавляют 2 — 3 капли раствора ферроина или 5 капель N-фенилантраниловой кислоты и титруют избыток бихромата калия раствором соли Мора до изменения окраски индикатора. Переход окраски для N-фенилантраниловой кислоты из красно-фиолетовой в изумрудно-зеленую, для ферроина - от зеленой до красновато-синей. В качестве конечной точки титрования берут первое резкое изменение цвета.

Таким же образом проводят холостой опыт с 20 см³ дистиллированной воды, используемой для разбавления пробы.

11 Вычисление и оформление результатов измерений

11 1 Значение ХПК анализируемой пробы, С, мг/дм³, рассчитывают по формуле:

$$C = \frac{(V_X - V_\Pi) \cdot K \cdot C_M \cdot 8 \cdot 1000}{V}$$

где V_X - объем раствора соли Мора, израсходованный на титрование при проведении холостого опыта, см³ - объем раствора соли Мора, израсходованный на титрование пробы, см³ - молярная концентрация соли Мора, моль/дм³

К - поправочный коэффициент раствора соли Мора

8	- количество кислорода, эквивалентное 1 моль соли Мора, мг
1000	- коэффициент объемного и массового пересчета
V	- объем пробы, взятый для определения, см ³

При необходимости проверки приемлемости результатов измерений в условиях повторяемости (например, по требованию заказчика или в случае анализа сложных проб) получают два результата измерений ХПК в пробах сточных вод по разделу 10 в условиях повторяемости. Проверяют приемлемость результатов измерений c_1 и c_2 , сравнивая расхождение между ними с пределом повторяемости (r для n=2, таблица 3). Если полученное значение расхождения не превышает предела повторяемости, то за результат измерений ХПК в пробе сточной воды принимают среднее из двух полученных значений c_1 и c_2 . В противном случае процедуру повторяют.

11.2 Результаты измерений значений ХПК в документах, предусматривающих их использование, представляются в виде:

$$C \pm \Delta$$
, мг/дм³,

где C - значение XПК в пробе, мг/дм³,

 Δ - значение границы интервала, в котором абсолютная погрешность измерений ХПК находится с доверительной вероятностью P=0.95, мг/дм³, (таблица 1).

12 Контроль качества результатов измерений

12.1 Контроль стабильности результатов измерений

Контроль стабильности результатов измерений в лаборатории осуществляют по ГОСТ Р ИСО 5725-6, раздел 6, используя методы контроля стабильности стандартного отклонения промежуточной прецизионности и контроля стабильности правильности рутинного анализа. Средство контроля готовят из стандартного образца ХПК (п. 4.1.6) и дистиплированной воды и анализируют согласно разделу 10. При построении контрольных карт для расчета пределов действия и предупреждения используют значения стандартного отклонения промежуточной прецизионности при различиях по факторам «время», «оператор», «оборудование», $\sigma_{ICO,ED}$, приведенные в таблице 3.

Таблица 3

Диапазон измерений ХПК, мг/дм ³	Предел повторяемости (n = 2), r, %	Стандартное отклонение промежуточной прецизионности (при различиях по факторам «время», «оператор», «оборудование»), <i>о_{і(п.о.е.)}</i> , %
от 5 до 10000 включ.	14	7

При неудовлетворительных результатах контроля, например, превышение предела действия или регулярное превышение предела предупреждения, выясняют причины этих отклонений, в том числе проводят смену реактивов, проверяют работу оператора.

Периодичность проведения контроля стабильности результатов измерений устанавливают индивидуально для каждой лаборатории в соответствии с документами по внутрилабораторному контролю качества результатов анализа.

12.2 Оперативный контроль точности результатов измерений

При внедрении методики в практику работы лаборатории проводят контроль точности результатов измерений ХПК, используя метод добавок в пробы различных типов вод, анализируемых в лаборатории.

Оперативный контроль точности осуществляется методом добавок с использованием проб природной и сточной вод. В качестве добавок используются растворы, приготовленные из ГСО, например, ГСО 7425-97. Приготовление добавок осуществляется путем разбавления соответствующего ГСО в мерной колбе дистиллированной водой в соответствии с инструкцией по применению ГСО.

Величина добавки рассчитывается таким образом, чтобы полученное после введения добавки (Сд, мг/дм 3) значение ХПК в пробе воды (Ск, мг/дм 3) удовлетворяло условию:

$$C\kappa = (1.5 \div 2) C$$
,

где С - значение XПК в пробе до введения добавки), мг/дм³.

Анализ пробы с добавкой производят в тех же условиях, что и исходной пробы.

Результаты контроля признаются удовлетворительными, если выполняется условие:

$$|C\kappa - C - C\pi| \le K$$
,

где К - норматив оперативного контроля точности.

Значения норматива оперативного контроля точности рассчитываются по формуле:

$$K = 0.84\sqrt{(\Delta_1)^2 + (\Delta_2)^2}$$

где Δ_1 , Δ_2 - значения границ интервала, в котором абсолютная погрешность измерений ХПК в пробе с добавкой и в пробе без добавки находится с доверительной вероятностью P=0.95, мг/дм³, (таблица 1).

При превышении норматива оперативного контроля точности эксперимент повторяют. В случае повторного превышения норматива выясняют причины, приводящие к неудовлетворительным результатам контроля, и принимают меры для их устранения.

После внедрения МВИ в практику работы лаборатории при необходимости приемлемости результатов измерений, полученных условиях воспроизводимости, проводят межлабораторные сравнительные испытания с методики использованием ланной для оценки стандартного воспроизводимости (см. Приложение А). В случае невозможности организации межлабораторных сравнительных испытаний допускается, согласно МИ 2336-2002, оценить значение стандартного отклонения воспроизводимости, σ_R , по формуле: σ_R = Проверку приемлемости результатов измерений в условиях $\sigma_{I(T,O,E)}$. воспроизводимости осуществляют по ГОСТ Р ИСО 5725-6-2002, пункт 5.3. Сопоставление альтернативных метолов измерений проводят по ГОСТ Р ИСО 5725-6-2002, раздел 8.

Приложение А

(информационное)

Результаты межлабораторных сравнительных испытаний

Оценки стандартных отклонений повторяемости и воспроизводимости

В таблице А.1 представлены данные по результатам межлабораторных сравнительных испытаний (МСИ), проведенных Органом по аккредитации ЦИКВ среди аккредитованных лабораторий и обработанных в соответствии с п.7.4 ГОСТ Р 5725-2-2002. Представленные данные не применимы для обобщений.

Таблица А.1

Наименование образца	Дата МСИ	р	n	<i>у,</i> мг/дм ³	<i>s_r,</i> мг/дм ³	S _r , %	<i>s_R,</i> мг/дм³	s _R , %
Очищенная	19.02.97	13	2	48	2	4	3	7
сточная вода								

- p количество лабораторий;
- п количество измерений, полученных в каждой лаборатории;
- у общее среднее значение ХПК в образце;
- s, оценка стандартного отклонения повторяемости результатов измерений;
- s_R оценка стандартного отклонения воспроизводимости результатов измерений.

В таблице А.2 представлены данные по результатам межлабораторных сравнительных испытаний (МСИ), проведенных ЗАО «Роса». Представленные данные не применимы для обобщений.

Таблица А.2

Наименование образца	Дата МСИ	μ, мг/дм³	Уφ, мг/дм³	p_{Φ}	<i>S_RФ</i> , мг/дм³	S _{RΦ} , %	<i>Ут</i> , мг/дм ³	p_T	<i>S_{RT}</i> , мг/дм ³	S _{RT} ,
Контрольный образец	Июнь 2002 г.	125	131	4	6	5	115	10	11	10

 μ – аттестованное значение ХПК в контрольном образце;

 p_{ϕ} – количество лабораторий, проводивших анализ фотометрическим методом;

 y_{ϕ} – общее среднее значение ХПК в контрольном образце, полученное фотометрическим методом;

 $s_{R\phi}$ – оценка стандартного отклонения воспроизводимости результатов измерений, полученных фотометрическим методом;

 p_{T} – количество лабораторий, проводивших анализ титриметрическим методом;

 y_T — общее среднее значение ХПК в контрольном образце, полученное титриметрическим методом;

 s_{RT} — оценка стандартного отклонения воспроизводимости результатов измерений, полученных титриметрическим методом.

Центр Исследования и Контроля Воды

аккредитован в Системе аккредитации аналитических лабораторий (центров) Госстандарта России, № Госреестра РОСС RU.0001.510045

Метрологическая служба аккредитована на право аттестации методик выполнения измерений и проведения метрологической экспертизы документов, в том числе применяемых в сферах распространения государственного метрологического контроля и надзора,

№ Госресстра 01.00031-97

199034, Санкт-Петербург, Университетская наб., 7/9 Факс (812) 323 -04-79

СВИДЕТЕЛЬСТВО № 070076

о метрологической аттестации

методики выполнения измерений химического потребления кислорода (XПК) в пробах природных и сточных вод титриметрическим методом

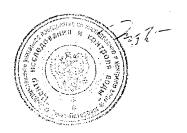
ЦВ3.01.17-01 «А»

Методика выполнения измерений (МВИ) массовой концентрации химического потребления кислорода (ХПК) в пробах природных и сточных вод титриметрическим методом,

разработанная Центром исследования и контроля воды,

регламентированная в документе: «Методика выполнения измерений химического потребления кислорода (ХПК) в пробах природных и сточных вод титриметрическим методом (ЦВ 3.01.17-01 «А»),

аттестована в соответствии с ГОСТ Р 8.563-96 (ГОСТ 8.010-90).


Аттестация осуществлена по данным внутрилабораторного контроля воспроизводимости и точности результатов измерений.

В результате аттестации установлено, что МВИ соответствует предъявляемым к ней метрологическим требованиям и обладает следующими основными метрологическими характеристиками:

Диапазон измерений значений ХПК, мг/дм ³	Характеристика погрешности (границы интервала, в котором погрешность находится с доверительной вероятностью $P = 0.95$) $\pm \Delta$, мг/дм ³
от 5 до 10000	0,15 · C + 0,75

Дата выдачи свидетельства 15 октября 2002 года

Директор

Н.П Ушаков

Телефон: (812) 323 0025 Факс: (812) 323 0479 E-mall:

welcome@ aqua-analyt.com